1/31/2021 C Programming-Functions

Hands On C
500 Working Programs

Functions

Understanding Functions

In [1]: #include <stdio.h>
int main(void) // Main is a function
{ printf("Hello, World\n"); // printf is a function
}
Hello, World

localhost:8888/notebooks/C Programming-Functions.ipynb 1/27

1/31/2021

In [2]:

In [3]:

C Programming-Functions

Functions

1. Have a unique name

2. Return a type or void

3. Receive one or more arguments called parameters
4. Execute when they are called

#include <stdio.h>

void aboutMe(void)

{ printf("Name: Kris Jamsa\n");
printf("Home Town: Prescott, Arizona\n");
printf("Hobbies: coding\n™);

}

int main(void) // Main is a function

{
aboutMe();

}

Name: Kris Jamsa
Home Town: Prescott, Arizona
Hobbies: coding

#include <stdio.h>

void aboutMe(void)

{
printf("Name: Kris Jamsa\n");
printf("Home Town: Prescott, Arizona\n");
printf("Hobbies: coding\n");
}
int main(void) // Main is a function
{
printf("Programs start in main\n");
aboutMe();
printf("Programs should end in main\n");
}

Programs start in main

Name: Kris Jamsa

Home Town: Prescott, Arizona
Hobbies: coding

Programs should end in main

localhost:8888/notebooks/C Programming-Functions.ipynb

227

1/31/2021

In [4]:

C Programming-Functions

Programs Pass Data to Functions Using
Parameters

#include <stdio.h>

int main(void)

{
printf("Hello\n"); // one parameter
printf("Age %d\n", 50); // two parameters
printf("Age %d %6.2f", 50, 100000.0); // three parameters

}

Hello

Age 50

Age 50 100000.00

Creating a Function that Receives a
Parameter

localhost:8888/notebooks/C Programming-Functions.ipynb

3/27

1/31/2021 C Programming-Functions

In [5]: #include <stdio.h>

void sayHello(int count)

{

for (int i = 0; i < count; i++)
printf("Hello, ");

printf("World\n");

}

int main(void)

{
sayHello(1);
sayHello(2);
sayHello(3);

}

Hello, World
Hello, Hello, World
Hello, Hello, Hello, World

Declaring Variables within a Function

localhost:8888/notebooks/C Programming-Functions.ipynb 4/27

1/31/2021

C Programming-Functions

In [6]: #include <stdio.h>

int max(int a, int b, int ¢)

{

int

int max = a; // assume a is the max

if (b
max

v

max)
b;

if (c
max

\'

max)
c;

return(max);

main(void)
inta=1, b =2, c = 3;

printf("Max of %d %d and %d is %d\n"

Max of 1 2 and 3 is 3

localhost:8888/notebooks/C Programming-Functions.ipynb

, a, b, ¢, max(a, b, c));

5/27

1/31/2021 C Programming-Functions

In [7]: #include <stdio.h>

int max(int a, int b, int ¢)

{
int max = a; // assume a is the max
if (b > max)
max = b;
if (c > max)
max = c;
return(max);
}
float floatmax(float a, float b, float c)
{
return((a > b) ? ((@a>c) 2 a:c): ((b>c)?b:c));
}
int main(void)
{
inta=1, b =2, c = 3;
float d = 1.1, e = 3.3, f = 2.2;
printf("Max of %d %d and %d is %d\n", a, b, c, max(a, b, c));
printf("Max of %3.1f %3.1f and %3.1f is %3.1f\n", d, e, f, floatmax(d, e, f))
¥

Max of 1 2 and 3 is 3
Max of 1.1 3.3 and 2.2 is 3.3

Revisiting main's Return Value

localhost:8888/notebooks/C Programming-Functions.ipynb 6/27

1/31/2021 C Programming-Functions
In [8]: #include <stdio.h>

int main(void)

{
}

printf("Hello, World\n");

Hello, World

In [9]: #include <stdio.h>
int main(void)

{
printf("Hello, World\n");

return(l);

Hello, World

[C kernel] Executable exited with code 1

In [10]: #include <stdio.h>

void main(void)

{
}

printf("Hello, World\n");

Hello, World

[C kernel] Executable exited with code 13

localhost:8888/notebooks/C Programming-Functions.ipynb 7127

1/31/2021 C Programming-Functions

Understanding main's Parameters

Command Line

C:\> Copy Filename.txt Filename.bak <Enter>

In [11]: #include <stdio.h>

int main(int argc, char *argv[])

{
printf("argc %d\n", argc);

for (int i = 9; i < argc; ++i)

printf("argv[%d] is %s\n", i, argv[i]);
}

argc 1
argv[0@] is /tmp/tmp9ufi@shw.out

For Readability, Functions Should Only Have One
Return Statement

localhost:8888/notebooks/C Programming-Functions.ipynb 8/27

1/31/2021 C Programming-Functions
In [12]: #include <stdio.h>

int compare(int a, int b)

{
if (a == b)
return(0);
if (a > b)
return(l);
else // b > a
return(2);
}
int main(void)
{
printf("Comparing %d and %d yields %d\n", 33, 22, compare(33, 22));
}

Comparing 33 and 22 yields 1

In [13]: #include <stdio.h>

int compare(int a, int b)

{
int result;
if (a == b)
result = 9;
if (a > b)
result = 1;
else // b > a
result = 2;
return(result);
}
int main(void)
{
printf("Comparing %d and %d yields %d\n", 33, 22, compare(33, 22));
}

Comparing 33 and 22 yields 1

localhost:8888/notebooks/C Programming-Functions.ipynb 9/27

1/31/2021

In [14]:

C Programming-Functions

Understanding Function Prototypes

#include <stdio.h>

int main(void)

{
printf("Comparing %d and %d yields %d\n", 33, 22, compare(33, 22));
}
int compare(int a, int b)
{
if (a == b)
return(0);
if (a > b)
return(1);
else // b > a
return(2);
}

/tmp/tmpsqjquf7b.c: In function ‘main’:

/tmp/tmpsqjquf7b.c:5:55: warning: implicit declaration of function f‘compare’ [-

Wimplicit-function-declaration]

N A A

Comparing 33 and 22 yields 1

localhost:8888/notebooks/C Programming-Functions.ipynb

10/27

1/31/2021 C Programming-Functions
In [15]: #include <stdio.h>
int compare(int, int); // Function prototype

int main(void)

{
printf("Comparing %d and %d yields %d\n", 33, 22, compare(33, 22));
}
int compare(int a, int b)
{
if (a == b)
return(0);
if (a > b)
return(l);
else // b > a
return(2);
}

Comparing 33 and 22 yields 1

Understanding Function Overhead

localhost:8888/notebooks/C Programming-Functions.ipynb 11/27

1/31/2021 C Programming-Functions

In [*]: #include <stdio.h>
#include <time.h>

float add_em(long int a, float b)

{
float result;
result = a + b;
return(result);
¥

int main(void)
{
float result = 0;
time_t start_time, stop_time;

printf("Calculating...\n");
time(&start_time);

for (long int i = 1; i <= 1000000000L; i++) // 1,000,000,000 numbers

result += i;

time(&stop_time);

printf("Using loop %ld seconds\n", stop_time - start_time);

printf("Calculating...\n");
time(&start_time);

for (long int i = 1; i <= 1000000000L; i++)
result = add_em(i, result);

time(&stop_time);

printf("Using function %1d seconds\n", stop_time - start_time);

Calculating...

localhost:8888/notebooks/C Programming-Functions.ipynb

12127

1/31/2021 C Programming-Functions

Understanding Global Variables

In [*]: #include <stdio.h>
int a, b, c; // global variables

void initialize(void)

{
a = 1000;
b = 2000;
C = 3000;
¥
int main(void)
{
initialize();
printf("%d %d %d\n", a, b, c);
}

Local and Global Variable Name Conflicts

localhost:8888/notebooks/C Programming-Functions.ipynb 13/27

1/31/2021 C Programming-Functions
In [*]: #include <stdio.h>
int a = 1000, b = 2000, c = 3000; // global variables

void hasConflict(void)

{
inta=1, b =2, c = 3;
printf("In hasConflict %d %d %d\n", a, b, c);
¥
int main(void)
{
hasConflict();
printf("In main %d %d %d\n", a, b, c);
¥

Understanding Call by Value

localhost:8888/notebooks/C Programming-Functions.ipynb 14/27

1/31/2021 C Programming-Functions
In [*]: #include <stdio.h>

void change_values(int a, int b)

{
a = 1000;
b = 2000;
}
int main(void)
{
int a=1, b = 2;
change_values(a, b);
printf("Ending Values %d %d\n", a, b);
}

Understanding Call by Reference

localhost:8888/notebooks/C Programming-Functions.ipynb 15/27

1/31/2021

In [*]:

In [*]:

C Programming-Functions
#include <stdio.h>

void change_values(int *a, int *b)

{
*3 = 1000;
*h = 2000;
}
int main(void)
{
int a=1, b = 2;
change_values(&a, &b);
printf("Ending Values %d %d\n", a, b);
}

#include <stdio.h>

void swapValues(float *a, float *b)

{
float temp = *a;
*a = *b;
*b = temp;
}
int main(void)
{
float big = 1000.0, little = 0.0;
swapValues(&big, &little);
printf("Big %f Little %f\n", big, little);
}

localhost:8888/notebooks/C Programming-Functions.ipynb

16/27

1/31/2021 C Programming-Functions

C Passes Arrays to Functions by Reference
(Address)

In [*]: #include <stdio.h>

void showArray(int array[], int numberOfElements)

{
for (int i = ©; i < numberOfElements; ++i)
printf("%d\n", array[i]);
}
int main(void)
{
int values[5] = {10, 20, 30, 40, 50 };
showArray(values, 5);
}

In [*]: #include <stdio.h>
#include <ctype.h>

void stringToUppercase(char string[])

{
for (int i = 0; string[i]; ++1)
string[i] = toupper(string[i]);
}
int main(void)
{
char string[] = "abcdef";
stringToUppercase(string);
printf("%s\n", string);
}

localhost:8888/notebooks/C Programming-Functions.ipynb

17/27

1/31/2021 C Programming-Functions

Static Variables Remember There Previous
Value
In [*]: #include <stdio.h>
long int totalCharacters(char string[])
{

int static count = 9;

for (int i = @; string[i]; ++i)

count++;
return(count);
}
int main(void)
{
printf("Characters counted so far %1d\n", totalCharacters("ABCDEF"));
printf("Characters counted so far %1ld\n", totalCharacters("GHIJKL"));
printf("Characters counted so far %1d\n", totalCharacters("MNOPQR"));
printf("Characters counted so far %1d\n", totalCharacters("STUVWXYZ"));
}

localhost:8888/notebooks/C Programming-Functions.ipynb 18/27

1/31/2021

C Programming-Functions

Understanding the const Qualifier

In [*]: #include <stdio.h>

int main(void)

{
const int i = 1001;
for (i = 0; i < 1000; ++i)
printf("%d\n", 1i);
}

Understanding Recursion

Value Calculation
1 1

2 2*1

3 3*2%]

4 4*3*2%*]

5 5*4%3%2%*]

localhost:8888/notebooks/C Programming-Functions.ipynb

Result
1

2

6

24

120

Factorial

1
2*Factorial(1)
3*Factorial(2)
4*Factorial(3)
5*Factorial(4)

19/27

1/31/2021 C Programming-Functions

In [*]: #include <stdio.h>

int factorial(int n)

{
if (n == 1)
return(l);
else
return(n*factorial(n-1));
}

int main(void)
{
for (int i = 1; i <= 5; i++)
printf("value %d factorial(%d) is %d\n", i, i, factorial(i));

In [*]: #include <stdio.h>

int factorial(int value)

{
printf("In factorial with the value %d\n", value);

if (value == 1)

{
printf("Returning the value 1\n");
return(l);

else
{
printf("Returning %d * factorial(%d)\n",
value, value-1);
return(value * factorial(value-1));

}
}
int main(void)
{
printf("The factorial of 4 is %d\n", factorial(4));
}

localhost:8888/notebooks/C Programming-Functions.ipynb 20/27

1/31/2021 C Programming-Functions
In [*]: #include <stdio.h>

void displayInReverse(char *string)

{
if (*string != '\0")
{
displayInReverse(string+l); // Next character
printf("%c", *string);
}
}
int main(void)
{
char string[] = "Hello, world!";
displayInReverse(string);
}

Determining When to Use Recursion

localhost:8888/notebooks/C Programming-Functions.ipynb 21/27

1/31/2021 C Programming-Functions

In [*]: #include <stdio.h>
#include <time.h>

int string length(const char *str)
{
int length = 0;

while (*str++)
length++;

return(length);
}

int main(void)
{
long int counter;
time_t start_time, end_time;

time(&start_time);

for (counter = 0; counter < 100000000L; counter++)
string_length("Hello, World");

time(&end_time);

printf("Processing time %1d second\n", end_time - start_time);

localhost:8888/notebooks/C Programming-Functions.ipynb

22/27

1/31/2021 C Programming-Functions

In [*]: #include <stdio.h>
#include <time.h>

int string length(const char *str)

{
if (*str)
return(l + string_length(str+1));
else
return(0);

}

int main(void)
{
long int counter;
time_t start_time, end_time;

time(&start_time);

for (counter = 0; counter < 100000000L; counter++)
string_length("Hello, world");

time(&end_time);

printf("Processing time %1ld seconds\n", end_time - start_time);

Creating a Function that Supports a Varying
Number of Parameters

localhost:8888/notebooks/C Programming-Functions.ipynb 23/27

1/31/2021

printf("Hello,
printf("Hello,

printf("Hello,

In [*]:

C Programming-Functions

world");
world %d\n", 1000);

world %d\n", 1000, 2000);

#include <stdio.h>

#include <stdarg.h>

int add_values(int value, ...)

{

va_list argument_ptr;

int result

:@;

if (value != 09)

{

result

+= value;

va_start(argument_ptr, value);

while ((value = va_arg(argument ptr, int)) != 0)
result += value;

va_end(argument_ptr);

}

return(result);

}

int main(void)
{
printf("Sum
printf("Sum
printf("Sum
printf("Sum

of 3 is %d\n", add_values(3, 0));

of 3 + 5 is %d\n", add_values(3, 5, 0));

of 3 +5 + 8 is %d\n", add_values(3, 5, 8, 0));

of 3+5+ 8 + 9 is %d\n", add_values(3, 5, 8 , 9,

localhost:8888/notebooks/C Programming-Functions.ipynb

9));

24127

1/31/2021 C Programming-Functions

Creating a Function that Supports Varying
Parameter with Different Types

In [*]: #include <stdio.h>
#include <stdarg.h>

double add _values(char *str, ...)
{
va_list marker;

double result = 0.0;

va_start(marker, str); // mark first additional argument

while (*str) // examine each character in the string
{
if (*str == '%") // 1f not a %_ format specifier, skip it
{

switch (*(++str)) {
case 'd': result += va_arg(marker, int);
break;
case 'f': result += va_arg(marker, double);
break;
}
}

str++;

}

va_end(marker);
return(result);

}

int main(void)

{

double result;

printf("Result %f\n", add_values("%f", 3.3));

printf("Result %f\n", add_values("%f %f", 1.1, 2.2));
printf("Result %f\n", add values("%f %d %f", 1.1, 1, 2.2));
printf("Result %f\n", add values("%f %d %f %d", 1.1, 1, 2.2, 3));

localhost:8888/notebooks/C Programming-Functions.ipynb 25/27

1/31/2021 C Programming-Functions

What You will Learn Next

To save programmers time, C compilers provide a library of built-in functions
your programs can call.

printf("The absolute value of -1 is %d\n", abs(-1));

localhost:8888/notebooks/C Programming-Functions.ipynb 26/27

1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 27127

