
1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 1/27

Understanding Functions
In [1]:

Hello, World

#include <stdio.h>

int main(void) // Main is a function
{
 printf("Hello, World\n"); // printf is a function
}

1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 2/27

In [2]:

In [3]:

Name: Kris Jamsa
Home Town: Prescott, Arizona
Hobbies: coding

Programs start in main
Name: Kris Jamsa
Home Town: Prescott, Arizona
Hobbies: coding
Programs should end in main

Functions

1. Have a unique name
2. Return a type or void
3. Receive one or more arguments called parameters
4. Execute when they are called

#include <stdio.h>

void aboutMe(void)
{
 printf("Name: Kris Jamsa\n");
 printf("Home Town: Prescott, Arizona\n");
 printf("Hobbies: coding\n");
}

int main(void) // Main is a function
{
 aboutMe();
}

#include <stdio.h>

void aboutMe(void)
{
 printf("Name: Kris Jamsa\n");
 printf("Home Town: Prescott, Arizona\n");
 printf("Hobbies: coding\n");
}

int main(void) // Main is a function
{
 printf("Programs start in main\n");
 aboutMe();
 printf("Programs should end in main\n");
}

1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 3/27

Programs Pass Data to Functions Using
Parameters

In [4]:

Creating a Function that Receives a
Parameter

Hello
Age 50
Age 50 100000.00

#include <stdio.h>

int main(void)
{
 printf("Hello\n"); // one parameter
 printf("Age %d\n", 50); // two parameters
 printf("Age %d %6.2f", 50, 100000.0); // three parameters
}

1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 4/27

a a ete
In [5]:

Declaring Variables within a Function

Hello, World
Hello, Hello, World
Hello, Hello, Hello, World

#include <stdio.h>

void sayHello(int count)
{
 for (int i = 0; i < count; i++)
 printf("Hello, ");

 printf("World\n");
}

int main(void)
{
 sayHello(1);
 sayHello(2);
 sayHello(3);
}

1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 5/27

In [6]:

Max of 1 2 and 3 is 3

#include <stdio.h>

int max(int a, int b, int c)
{
 int max = a; // assume a is the max

 if (b > max)
 max = b;

 if (c > max)
 max = c;

 return(max);
}

int main(void)
{
 int a = 1, b = 2, c = 3;

 printf("Max of %d %d and %d is %d\n", a, b, c, max(a, b, c));
}

1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 6/27

In [7]:

Revisiting main's Return Value

Max of 1 2 and 3 is 3
Max of 1.1 3.3 and 2.2 is 3.3

#include <stdio.h>

int max(int a, int b, int c)
{
 int max = a; // assume a is the max

 if (b > max)
 max = b;

 if (c > max)
 max = c;

 return(max);
}

float floatmax(float a, float b, float c)
{
 return((a > b) ? ((a > c) ? a : c) : ((b > c) ? b : c));
}

int main(void)
{
 int a = 1, b = 2, c = 3;
 float d = 1.1, e = 3.3, f = 2.2;

 printf("Max of %d %d and %d is %d\n", a, b, c, max(a, b, c));
 printf("Max of %3.1f %3.1f and %3.1f is %3.1f\n", d, e, f, floatmax(d, e, f))
}

1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 7/27

In [8]:

In [9]:

In [10]:

Hello, World

Hello, World

[C kernel] Executable exited with code 1

Hello, World

[C kernel] Executable exited with code 13

#include <stdio.h>

int main(void)
{
 printf("Hello, World\n");
}

#include <stdio.h>

int main(void)
{
 printf("Hello, World\n");
 return(1);
}

#include <stdio.h>

void main(void)
{
 printf("Hello, World\n");
}

1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 8/27

Understanding main's Parameters

In [11]:

For Readability, Functions Should Only Have One
Return Statement

argc 1
argv[0] is /tmp/tmp9ufi0shw.out

Command Line

C:\> Copy Filename.txt Filename.bak <Enter>

#include <stdio.h>

int main(int argc, char *argv[])
{
 printf("argc %d\n", argc);

 for (int i = 0; i < argc; ++i)
 printf("argv[%d] is %s\n", i, argv[i]);
}

1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 9/27

In [12]:

In [13]:

Comparing 33 and 22 yields 1

Comparing 33 and 22 yields 1

#include <stdio.h>

int compare(int a, int b)
{
 if (a == b)
 return(0);
 if (a > b)
 return(1);
 else // b > a
 return(2);
}

int main(void)
{
 printf("Comparing %d and %d yields %d\n", 33, 22, compare(33, 22));
}

#include <stdio.h>

int compare(int a, int b)
{
 int result;

 if (a == b)
 result = 0;
 if (a > b)
 result = 1;
 else // b > a
 result = 2;

 return(result);
}

int main(void)
{
 printf("Comparing %d and %d yields %d\n", 33, 22, compare(33, 22));
}

1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 10/27

Understanding Function Prototypes
In [14]:

/tmp/tmpsqjquf7b.c: In function ‘main’:
/tmp/tmpsqjquf7b.c:5:55: warning: implicit declaration of function ‘compare’ [-
Wimplicit-function-declaration]
 printf("Comparing %d and %d yields %d\n", 33, 22, compare(33, 22));
 ^~~~~~~

Comparing 33 and 22 yields 1

#include <stdio.h>

int main(void)
{
 printf("Comparing %d and %d yields %d\n", 33, 22, compare(33, 22));
}

int compare(int a, int b)
{
 if (a == b)
 return(0);
 if (a > b)
 return(1);
 else // b > a
 return(2);
}

1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 11/27

In [15]:

Understanding Function Overhead

Comparing 33 and 22 yields 1

#include <stdio.h>

int compare(int, int); // Function prototype

int main(void)
{
 printf("Comparing %d and %d yields %d\n", 33, 22, compare(33, 22));
}

int compare(int a, int b)
{
 if (a == b)
 return(0);
 if (a > b)
 return(1);
 else // b > a
 return(2);
}

1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 12/27

In [*]:

Calculating...

#include <stdio.h>
#include <time.h>

float add_em(long int a, float b)
 {
 float result;
 result = a + b;
 return(result);
 }

 int main(void)
 {
 float result = 0;
 time_t start_time, stop_time;

 printf("Calculating...\n");
 time(&start_time);

 for (long int i = 1; i <= 1000000000L; i++) // 1,000,000,000 numbers
 result += i;

 time(&stop_time);

 printf("Using loop %ld seconds\n", stop_time - start_time);

 printf("Calculating...\n");
 time(&start_time);

 for (long int i = 1; i <= 1000000000L; i++)
 result = add_em(i, result);

 time(&stop_time);

 printf("Using function %ld seconds\n", stop_time - start_time);
 }

1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 13/27

Understanding Global Variables
In [*]:

Local and Global Variable Name Conflicts

#include <stdio.h>

int a, b, c; // global variables

void initialize(void)
{
 a = 1000;
 b = 2000;
 c = 3000;
}

int main(void)
{
 initialize();
 printf("%d %d %d\n", a, b, c);
}

1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 14/27

In [*]:

Understanding Call by Value

#include <stdio.h>

int a = 1000, b = 2000, c = 3000; // global variables

void hasConflict(void)
{
 int a = 1, b = 2, c = 3;

 printf("In hasConflict %d %d %d\n", a, b, c);
}

int main(void)
{
 hasConflict();
 printf("In main %d %d %d\n", a, b, c);
}

1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 15/27

In [*]:

Understanding Call by Reference

#include <stdio.h>

void change_values(int a, int b)
{
 a = 1000;
 b = 2000;
}

int main(void)
{
 int a = 1, b = 2;

 change_values(a, b);
 printf("Ending Values %d %d\n", a, b);
}

1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 16/27

In [*]:

In [*]:

#include <stdio.h>

void change_values(int *a, int *b)
{
 *a = 1000;
 *b = 2000;
}

int main(void)
{
 int a = 1, b = 2;

 change_values(&a, &b);
 printf("Ending Values %d %d\n", a, b);
}

#include <stdio.h>

void swapValues(float *a, float *b)
{
 float temp = *a;
 *a = *b;
 *b = temp;
}

int main(void)
{
 float big = 1000.0, little = 0.0;

 swapValues(&big, &little);
 printf("Big %f Little %f\n", big, little);
}

1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 17/27

C Passes Arrays to Functions by Reference
(Address)

In [*]:

In [*]:

#include <stdio.h>

void showArray(int array[], int numberOfElements)
{
 for (int i = 0; i < numberOfElements; ++i)
 printf("%d\n", array[i]);
}

int main(void)
{
 int values[5] = {10, 20, 30, 40, 50 };
 showArray(values, 5);
}

#include <stdio.h>
#include <ctype.h>

void stringToUppercase(char string[])
{
 for (int i = 0; string[i]; ++i)
 string[i] = toupper(string[i]);
}

int main(void)
{
 char string[] = "abcdef";

 stringToUppercase(string);
 printf("%s\n", string);
}

1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 18/27

Static Variables Remember There Previous
Value

In [*]:

#include <stdio.h>

long int totalCharacters(char string[])
{
 int static count = 0;

 for (int i = 0; string[i]; ++i)
 count++;

 return(count);
}

int main(void)
{
 printf("Characters counted so far %ld\n", totalCharacters("ABCDEF"));
 printf("Characters counted so far %ld\n", totalCharacters("GHIJKL"));
 printf("Characters counted so far %ld\n", totalCharacters("MNOPQR"));
 printf("Characters counted so far %ld\n", totalCharacters("STUVWXYZ"));
}

1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 19/27

Understanding the const Qualifier
In [*]:

Understanding Recursion

#include <stdio.h>

int main(void)
{
 const int i = 1001;

 for (i = 0; i < 1000; ++i)
 printf("%d\n", i);
}

Value Calculation Result Factorial
1 1 1 1
2 2*1 2 2*Factorial(1)
3 3*2*1 6 3*Factorial(2)
4 4*3*2*1 24 4*Factorial(3)
5 5*4*3*2*1 120 5*Factorial(4)

1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 20/27

In [*]:

In [*]:

#include <stdio.h>

int factorial(int n)
{
 if (n == 1)
 return(1);
 else
 return(n*factorial(n-1));
}

int main(void)
{
 for (int i = 1; i <= 5; i++)
 printf("Value %d factorial(%d) is %d\n", i, i, factorial(i));
}

#include <stdio.h>

int factorial(int value)
 {
 printf("In factorial with the value %d\n", value);

 if (value == 1)
 {
 printf("Returning the value 1\n");
 return(1);
 }
 else
 {
 printf("Returning %d * factorial(%d)\n",
 value, value-1);
 return(value * factorial(value-1));
 }
 }

int main(void)
 {
 printf("The factorial of 4 is %d\n", factorial(4));
 }

1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 21/27

In [*]:

Determining When to Use Recursion

#include <stdio.h>

void displayInReverse(char *string)
{
 if (*string != '\0')
 {
 displayInReverse(string+1); // Next character
 printf("%c", *string);
 }
}

int main(void)
{
 char string[] = "Hello, world!";

 displayInReverse(string);
}

1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 22/27

In [*]: #include <stdio.h>
#include <time.h>

int string_length(const char *str)
 {
 int length = 0;

 while (*str++)
 length++;

 return(length);
 }

int main(void)
 {
 long int counter;

 time_t start_time, end_time;

 time(&start_time);

 for (counter = 0; counter < 100000000L; counter++)
 string_length("Hello, World");

 time(&end_time);

 printf("Processing time %ld second\n", end_time - start_time);
 }

1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 23/27

In [*]:

Creating a Function that Supports a Varying
Number of Parameters

#include <stdio.h>
#include <time.h>

int string_length(const char *str)
 {
 if (*str)
 return(1 + string_length(str+1));
 else
 return(0);
 }

int main(void)
 {
 long int counter;

 time_t start_time, end_time;

 time(&start_time);

 for (counter = 0; counter < 100000000L; counter++)
 string_length("Hello, world");

 time(&end_time);

 printf("Processing time %ld seconds\n", end_time - start_time);
 }

1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 24/27

In [*]:

printf("Hello, world");

printf("Hello, world %d\n", 1000);

printf("Hello, world %d\n", 1000, 2000);

#include <stdio.h>
#include <stdarg.h>

int add_values(int value, ...)
 {
 va_list argument_ptr;
 int result = 0;

 if (value != 0)
 {
 result += value;
 va_start(argument_ptr, value);

 while ((value = va_arg(argument_ptr, int)) != 0)
 result += value;

 va_end(argument_ptr);
 }
 return(result);
 }

int main(void)
 {
 printf("Sum of 3 is %d\n", add_values(3, 0));
 printf("Sum of 3 + 5 is %d\n", add_values(3, 5, 0));
 printf("Sum of 3 + 5 + 8 is %d\n", add_values(3, 5, 8, 0));
 printf("Sum of 3 + 5 + 8 + 9 is %d\n", add_values(3, 5, 8 , 9, 0));
 }

1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 25/27

Creating a Function that Supports Varying
Parameter with Different Types

In [*]:

#include <stdio.h>
#include <stdarg.h>

double add_values(char *str, ...)
{
 va_list marker;

 double result = 0.0;

 va_start(marker, str); // mark first additional argument

 while (*str) // examine each character in the string
 {
 if (*str == '%') // if not a %_ format specifier, skip it
 {
 switch (*(++str)) {
 case 'd': result += va_arg(marker, int);
 break;
 case 'f': result += va_arg(marker, double);
 break;
 }
 }
 str++;
 }

 va_end(marker);
 return(result);
 }

int main(void)
 {
 double result;

 printf("Result %f\n", add_values("%f", 3.3));
 printf("Result %f\n", add_values("%f %f", 1.1, 2.2));
 printf("Result %f\n", add_values("%f %d %f", 1.1, 1, 2.2));
 printf("Result %f\n", add_values("%f %d %f %d", 1.1, 1, 2.2, 3));
 }

1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 26/27

What You will Learn Next

To save programmers time, C compilers provide a library of built-in functions
your programs can call.

printf("The absolute value of -1 is %d\n", abs(-1));

1/31/2021 C Programming-Functions

localhost:8888/notebooks/C Programming-Functions.ipynb 27/27

